

Blick Software Suite

Version 1.7

Processor Release Note

(LuftBlick Report 2019010)

15th December 2019

	Name	Company
prepared by	Alexander Cede	LuftBlick
	Martin Tiefengraber	LuftBlick
	Manuel Gebetsberger	LuftBlick

1 Release overview

General					
Operational from	December 2019				
Predecessor version	1.5				
Compatible with files from predecessor?					
Raw data (L0)	YES				
Operation file	YES				
Calibration file	YES				

2 Major changes

Processing setup file

These are the main changes between Blick Software Versions (BSS) v1.5 and v1.7:

- C1 Included instrument sensitivity in spectral fitting for wavelength change.
- C2 Add entry "Data product status" to L2 files.

NO

- C3 Improved the merging of L2Fit data into L2 data avoiding holes in the full data base.
- C4 Applied a linearization for the offset term in the linear fitting to speed up the retrieval.
- C5 Adapted BlickP to work on compressed files.
- C6 The average signal is added to the output of L2 files. This parameter gives a quick look of the signal level and also allows a correct evaluation of the smoothing polynomials used in the spectral fitting, since they have been scaled by this value.
- C7 The option to apply successive fitting is added. This technique allows to enter results from a different fitting process into the current spectral fitting.
- C8 Adapted BlickP to work with high speed measurements.

For details we refer to the manual (Cede [1]).

3 Impact on operational data

3.1 Comparison approach

In the following two subsections, a comparison between v1.5 and v1.7 processed L2 data for 14 datasets is performed in terms of:

- absolute difference in Dobson Units (DU): v1.7 v1.5
- relative difference in %: (v1.7 v1.5) / v1.5

As illustrated in the overview plot (Figure 1), the differences are not normally distributed, wherefore values for absolute and relative differences are reported as median, 5% quantile, and 95% quantile. Moreover, the same evaluation is performed for each of the 14 sites individually to illustrate instrument-specific differences.

3.2 Direct sun total column NO₂

The following comparison refers to retrieval code 'nvs0' for direct sun NO_2 . Using the subset of high quality data (flag=0,10) for 14 sites, leads to 836 470 individual NO_2 measurements to be compared. Table 1 summarizes the overall differences for NO_2 . On median, there is no difference in the total column amounts (TC),

	$\Delta TC[DU]$	$\Delta TC[\%]$	Δ wrms[]	Δ wrms[%]
Median	0.000	0.000	0	0.000
Q5	-0.001	-0.253	0	-0.714
Q95	0.001	0.430	0.2e-4	6.499

Table 1: Summary of NO_2 for absolute differences in total column [DU], relative differences in total column [%], relative differences in wrms [%], reported as median, 5% quantile, and 95% quantile (top,middle,bottom).

and measured uncertainty weighted root mean squared (wrms). The inner 90% of relative differences range for -0.25 to +0.43% change in the total columns. The absolute values range from -0.001 to 0.001 DU, and varies between the sites. Figure 2 illustrates the station-wise evaluation.

Figure 1: Absolute Differences for NO₂ (left) and O₃ (right).

Figure 2: Boxplot of station-wise differences for NO_2 (left) and O_3 (right), evaluated for 5% (q5) and 95% (q95) quantile for each of the 14 sites. Shown are the median as a horizontal bar, the interquartile range (25–75%) in boxes, whiskers for +/- 1.5 times interquartile range, and outliers in solid circles.

3.3 Direct sun total column O₃

The following comparison refers to retrieval code 'out0' for direct sun O_3 . Using the subset of high quality data (flag=0,10) for 14 sites leads to 738 238 individual O_3 measurements to be compared. Table 2 summarizes the overall differences for O_3 . On median, there is no difference in the total column amounts (VC). However,

	$\Delta TC[DU]$	$\Delta TC[\%]$	Δ wrms[]	Δ wrms[%]
Median	0.00	0.00	-1.7e-4	-3.21
Q5	-0.97	-0.32	-7.0e-4	-12.00
Q95	0.85	0.32	0	0.01

Table 2: Summary of O_3 for absolute differences in total column [DU], relative differences in total column [%], relative differences in wrms [%], reported as median, 5% quantile, and 95% quantile (top,middle,bottom).

there is a positive impact on the wrms, being smaller with v1.7. The inner 90% of relative differences range for -0.3 to +0.3% change in the total columns. The absolute values range from -0.97 to +0.85 DU, and varies between the sites. Figure 2 illustrates the station-wise evaluation.

4 Summary

The change from processing version v1.5 to v1.7 shows similar changes in the total columns for NO_2 and O_3 of approximately +/- 0.3%. This change is motstly related to C1 (Sec. 2), where its improvements are visible in particular the decreased wrms of O3.

v1.7 requires a new processing setup file if data want to be processed locally, which can be downloaded from https://www.pandonia-global-network.org/home/documents/software/.

5 Applicable Documents

[1] A. Cede. *Manual for Blick Software Suite Version 17*, 2019. URL https://www.pandonia-global-network.org/wp-content/uploads/2019/11/BlickSoftwareSuite_Manual_v1-7.pdf.